skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Prior, Kirsten M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Taylor, Scott; Zelditch, Miriam (Ed.)
    Abstract Host shifts to new plant species can drive speciation for plant-feeding insects, but how commonly do host shifts also drive diversification for the parasites of those same insects? Oak gall wasps induce galls on oak trees and shifts to novel tree hosts and new tree organs have been implicated as drivers of oak gall wasp speciation. Gall wasps are themselves attacked by many insect parasites, which must find their hosts on the correct tree species and organ, but also must navigate the morphologically variable galls with which they interact. Thus, we ask whether host shifts to new trees, organs, or gall morphologies correlate with gall parasite diversification. We delimit species and infer phylogenies for two genera of gall kleptoparasites, Synergus and Ceroptres, reared from a variety of North American oak galls. We find that most species were reared from galls induced by just one gall wasp species, and no parasite species was reared from galls of more than four species. Most kleptoparasite divergence events correlate with shifts to non-ancestral galls. These shifts often involved changes in tree habitat, gall location, and gall morphology. Host shifts are thus implicated in driving diversification for both oak gall wasps and their kleptoparasitic associates. 
    more » « less
  2. Abstract AimAs species' ranges shift poleward in response to anthropogenic change, they may lose antagonistic interactions if they move into less diverse communities, fail to interact with novel populations or species effectively, or if ancestral interacting populations or species fail to shift synchronously. We leveraged a poleward range expansion in a tractable insect host–enemy community to uncover mechanisms by which altered antagonistic interactions between native and recipient communities contributed to ‘high niche opportunities’ (limited biotic resistance) for a range‐expanding insect. LocationNorth America, Pacific Northwest. MethodsWe created quantitative insect host–enemy interaction networks by sampling oak gall wasps on 400 trees of a dominant oak species in the native and expanded range of a range‐expanding gall wasp species. We compared host–enemy network structure between regions. We measured traits (phenology, morphology) of galls and interacting parasitoids, predicting greater trait divergence in the expanded range. We measured function relating to host control and explored if altered interactions and traits contributed to reduced function, or biotic resistance. ResultsInteraction networks had fewer species in the expanded range and lower complementarity of parasitoid assemblages among host species. While networks were more generalized, interactions with the range‐expanding species were more specialized in the expanded range. Specialist enemies effectively tracked the range‐expanding host, and there was reduced apparent competition with co‐occurring hosts by shared generalist enemies. Phenological divergence of enemy assemblages interacting with the range‐expanding and co‐occurring hosts was greater in the expanded range, potentially contributing to weak apparent competition. Biotic resistance was lower in the expanded range, where fewer parasitoids emerged from galls of the range‐expanding host. Main ConclusionsChanges in interactions with generalist enemies created high niche opportunities, and limited biotic resistance, suggesting weak apparent competition may be a mechanism of enemy release for range‐expanding insects embedded within generalist enemy networks. 
    more » « less
  3. Abstract Cooperative interactions may frequently be reinforced by “partner fidelity feedback,” in which high‐ or low‐quality partners drive positive feedbacks with high or low benefits for the host, respectively. Benefits of plant–animal mutualisms for plants have been quantified almost universally in terms of growth or reproduction, but these are only two of many sinks to which a host‐plant allocates its resources. By investigating how partners to host‐plants impact two fundamental plant resources, carbon and water, we can better characterize plant–partner fidelity and understand how plant–partner mutualisms may be modulated by resource dynamics. In Laikipia, Kenya, four ant species compete forAcacia drepanolobiumhost‐plants. These ants differ in multiple traits, from nectar consumption to host‐plant protection. Using a 5‐year ant removal experiment, we compared carbon fixation, leaf water status, and stem non‐structural carbohydrate concentrations for adult ant–plants with and without ant partners. Removal treatments showed that the ants differentially mediate tree carbon and/or water resources. All three ant species known to be aggressive against herbivores were linked to benefits for host‐plant resources, but only the two species that defend but do not prune the host,Crematogaster mimosaeandTetraponera penzigi, increased tree carbon fixation. Of these two species, only the nectivoreC. mimosaeincreased tree simple sugars.Crematogaster nigriceps, which defends the tree but also castrates flowers and prunes meristems, was linked only to lower tree water stress approximated by pre‐dawn leaf water potential. In contrast to those defensive ants,Crematogaster sjostedti, a poor defender that displaces other ants, was linked to lower tree carbon fixation. Comparing the effects of the four ant species across control trees suggests that differential ant occupancy drives substantial differences in carbon and water supply among host trees. Our results highlight that ant partners can positively or negatively impact carbon and/or water relations for their host‐plant, and we discuss the likelihood that carbon‐ and water‐related partner fidelity feedback loops occur across ant–plant mutualisms. 
    more » « less